His151 and His296 are the acid-base catalytic residues of Bacillus cereus sphingomyelinase in sphingomyelin hydrolysis.

نویسندگان

  • Takashi Obama
  • Shinobu Fujii
  • Hiroh Ikezawa
  • Kiyoshi Ikeda
  • Masayoshi Imagawa
  • Kikuo Tsukamoto
چکیده

Bacillus cereus sphingomyelinase belongs to the Mg(2+)-dependent neutral sphingomyelinase, which hydrolyses sphingomyelin to phosphocholine and ceramide, and acts as an extracellular hemolysin. The triplet residues, His151-Asp195-His296, of the enzyme are highly conserved among bacterial and mammalian Mg(2+)-dependent neutral sphingomyelinases. The triplet residues converge on the active-site pocket of the 3D model of the enzyme. To investigate the function of these residues in the acid-base catalysis, we introduced several mutations for each residue by site-directed mutagenesis. Hemolytic and hydrolytic activities of the enzyme, abolished by the mutations at Asp195 and His296, revealed that these residues are critical for the catalytic function. The effect of the divalent metal cations on the pH dependency of the hydrolytic activities indicates that His296 corresponds to the most acidic ionizable group as a general base. The mutagenesis at His151 was also deleterious; however, the H151A and H151Q mutant enzymes partially retained their activities. The H151A mutation affected the most basic ionizable group, suggesting that His151 may act as a general acid in catalysis. By the structural basis of the 3D model, Asp195 must maintain not only the appropriate spatial arrangement but also pK(a)s of His151 and His296. Taking into consideration all of these, we proposed the acid-base catalytic mechanism of B. cereus sphingomyelinase.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mutation in aspartic acid residues modifies catalytic and haemolytic activities of Bacillus cereus sphingomyelinase.

Four aspartic acid residues (Asp126, Asp156, Asp233 and Asp295) of Bacillus cereus sphingomyelinase (SMase) in the conservative regions were changed to glycine by in vitro mutagenesis, and the mutant SMases [D126G (Asp126-->Gly etc.), D156G, D233G and D295G] were produced in Bacillus brevis 47, a protein-producing strain. The sphingomyelin (SM)-hydrolysing activity of D295G was completely aboli...

متن کامل

Chromogenic assay for the activity of sphingomyelinase from Bacillus cereus and its application to the enzymatic hydrolysis of lysophospholipids.

We developed a convenient chromogenic assay method for the activity of sphingomyelinase (SMase) from Bacillus cereus. SMase reaction was quenched by Zn(2+), and the released phosphocholine was converted into a choline by the action of alkaline phosphatase. After that, the choline was converted into a chromogenic dye by the actions of choline oxidase and peroxidase in the presence of EDTA to tra...

متن کامل

Kinetic steps for the hydrolysis of sphingomyelin by Bacillus cereus sphingomyelinase in lipid monolayers.

The sphingomyelinase (Sphmase) activity degrading sphingomyelin (Sphm) monolayers shows a slow-reaction latency period before exhibiting constant rate catalysis. These two kinetic regions are regulated independently by the lateral surface pressure and by lipids that are biomodulators of cell function such as ceramide, glycosphingolipids, fatty acids, and lysophospholipids. Knowledge of the inte...

متن کامل

Role of Phospholipid Metabolism and G Protein in the Action Induced by Clostridium Perfringens Alpha-Toxin

Clostridium perfringens produces alpha-toxin, which is an important virulence factor in gas gangrene [1-3]. Alpha-toxin is hemolytic, dermonecrotic, and lethal. Furthermore, it has phospholipase C (PLC) and sphingomyelinase (SMase) activities [13]. The toxin has been shown to damage the membranes of various mammalian cells [1-3] as well as artificial membranes [4]. The structure of alpha-toxin ...

متن کامل

Structural basis for metal ion coordination and the catalytic mechanism of sphingomyelinases D.

Sphingomyelinases D (SMases D) from Loxosceles spider venom are the principal toxins responsible for the manifestation of dermonecrosis, intravascular hemolysis, and acute renal failure, which can result in death. These enzymes catalyze the hydrolysis of sphingomyelin, resulting in the formation of ceramide 1-phosphate and choline or the hydrolysis of lysophosphatidyl choline, generating the li...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biological & pharmaceutical bulletin

دوره 26 7  شماره 

صفحات  -

تاریخ انتشار 2003